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Abstract
The problem of both phonon and electron scattering by long-range strain fields
caused by wedge disclination dipoles (WDD) is studied in the framework of
the deformation potential approach. The exact analytical results for the mean
free path are obtained within the Born approximation. The WDD-induced
contribution to the residual resistivity in nanocrystalline metals is estimated.
Phonon scattering due to randomly distributed WDDs is shown to result in
a clear crossover from T 3- to T 2-behaviour in the thermal conductivity, κ ,
at low temperatures. A combination of two scattering processes, the phonon
scattering due to biaxial WDD and the Rayleigh-type scattering, is suggested to
be of importance for amorphous dielectrics. Our results are in good agreement
with the experimentally observed κ for a-SiO2, a-GeO2, a-Se, and polystyrene.
Numerical calculations show that κ is very sensitive to the size of the dipole
separation, which is fixed near 20 Å.

1. Introduction

There exist many varieties of extended defect in crystals, topological in their origin. The best-
known examples are dislocations, disclinations, twins, grain boundaries, and stacking faults.
These defects play a significant role in the description of various phenomena in real crystals as
well as in disordered materials. In particular, there is reason to believe that linear defects like
dislocations and disclinations are the principal imperfections of liquid crystals (Kléman 1983),
some amorphous solids (Nelson 1983, Rivier 1979), and polymers (Li and Gilman 1970).

The contribution to the transport characteristics due to dislocations is now well understood
(see for example Ziman (1960), Gantmakher and Levinson (1987)). Some aspects of
the qualitative behaviour of the disclination-induced electron scattering have been recently
presented by Krasavin and Osipov (1997). In particular, it was found that both dislocations
and disclinations can be effective scattering centres for conduction electrons, especially at
low temperatures when other scattering mechanisms are suppressed. Thus, along with point
impurities, these defects give a contribution to the residual resistivity. In real crystals, however,
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the isolated disclinations are rather exotic objects. Instead, for topological reasons, the dipole
as well as multipole configurations are more favourable. In addition, the creation energy for a
single disclination considerably exceeds that for a disclination dipole.

There is another reason to call attention to dipoles of disclinations. In fact, the wedge
disclination dipoles (WDD) simulate finite dislocation walls. In turn, the low-angle grain
boundaries can be described as dislocation walls (Read and Shockley 1950, Amelinckx 1959).
Thus, one can expect the results obtained for disclination dipoles to be useful in description of
the grain-boundary scattering problem. This allows us to extend the possible applications to a
study of the transport properties in materials where grain boundaries are of importance (e.g., in
polycrystals). In particular, there is experimental evidence that the grain boundaries give a
contribution to the resistivity in metals (see for example Gusev (1998)), which depends on the
size of the grain boundary. Notice that although the problem of the grain-boundary-induced
scattering was formulated many years ago, a proper solution is still lacking.

A theory of the phonon scattering by grain boundaries has been developed within the
Born approximation (Klemens 1955). A grain boundary was considered as a wall of edge
dislocations with the rather strong assumption that the dislocation wall is infinitely long.
Nevertheless, the main properties predicted by this model have been confirmed by experiments
(Berman 1952, Anderson and Malinowski 1972, Roth and Anderson 1978). In particular, the
phonon mean free path was found to be constant over a wide temperature range. As a result,
the low-temperature thermal conductivity in materials with grain boundaries varies as T 3 in
agreement with the experimental data.

Recently (Osipov and Krasavin 1998a), the grain-boundary phonon scattering problem
was investigated within a more realistic model which takes into account the finiteness of the
boundary. The basis for this model was the above-mentioned analogy between disclination
dipoles and finite walls of edge dislocations (Li 1972, de Wit 1973). It was found that the proper
consideration of the finiteness of the boundary results in a low-temperature crossover (from
T 3 to T 2) of the thermal conductivity. The crossover temperature depends crucially on the
dipole separation. Notice that a similar crossover has been found in a number of experiments
on deformed alkali halides (Anderson and Malinowski 1972, Roth and Anderson 1978) and
ferroelectric KDP (Weilert et al 1993) (see the discussion below).

A more intriguing application is an attempt to describe the physics of dielectric glasses
by considering WDD as the principal defects in these materials (Osipov and Krasavin
1998b). In other words, this is an attempt to go beyond effective-medium models and take
into account the microscopic structure of glasses. In fact, the disclinations and dipoles of
disclinations have already been considered in the context of disordered systems (Kléman
1989, Nelson 1983). What is important is that these defects are known to be sources of
additional long-range strain fields. Moreover, it was found recently that the phonon scattering
due to strain fields caused by biaxial WDD (BWDD) becomes very specific and, at small
dipole separation 2L, one can fit the thermal conductivity in a-SiO2 below 1 K in good
agreement with experiment. This consideration introduces the new dimensional parameter,
2L, which characterizes the microstructure of glasses with BWDDs as the basic elements of
disordered states.

It is also interesting to note that this approach supports the cluster picture of glasses
(Kauzmann 1948, Phillips 1983). Indeed, according to this picture, in the amorphous state
there exist many microclusters with average diameters of the order of 20–30 Å. The strain fields
due to cluster interfaces in a network can be rigorously defined in terms of finite dislocation
walls or, equivalently, BWDDs. Notice that for a-SiO2 the best fit was obtained with 2L = 20 Å
which is in a good agreement with the cluster diameter proposed within the cluster model as
well as with the results of other experiments.
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On the other hand, the concept of elastic dipoles for orientational glasses was introduced
and successfully explored by Randeria and Sethna (1988) and Grannan et al (1988, 1990a, b).
The authors considered elastic dipoles as structural elements of glasses additional to two-level
systems (TLS). This assumption allows them to describe both the specific heat and the thermal
conductivity of some glasses in the plateau region and above (up to 100 K). The physical nature
of these dipoles, however, has not yet been clarified. It will be shown below that the concept
of the elastic dipole can be successfully realized via dipoles of wedge disclinations without
considering TLS. That is, the WDD-induced phonon scattering is found to provide the correct
description of the low-temperature thermal conductivity of various amorphous dielectrics.

The main goal of the paper is twofold. First, we outline the general formalism of the
WDD-induced scattering for both electrons and phonons. The most important details needed
for a better understanding of the calculations are given. Second, we apply the results obtained
in the description of two important problems. The first one is the experimentally observed
deviation of the thermal conductivity from a T 3-dependence below some T ′ for deformed
materials. The second problem is the thermal conductivity of amorphous dielectrics.

It was shown (Osipov and Krasavin 1998b) that the experimentally observed behaviour
of the thermal conductivity of a-SiO2 over a wide temperature range can be explained by a
combination of two scattering processes. The first one arises from the phonon scattering due
to biaxial WDD while the second one is the Rayleigh-type scattering. In the present paper we
extend our investigation to other glasses and discuss some unresolved questions.

The paper is organized as follows. The general formalism of the WDD-induced scattering
is presented in section 2. We consider all possible types of WDD and calculate the cor-
responding phonon mean free paths. The principal distinction between the scattering properties
of the uniaxial and biaxial dipoles is shown. In subsection 2.1 the approach developed is applied
to estimation of the WDD-induced contribution to the residual resistivity of granular metals.
In subsection 2.2 the phonon scattering due to WDD is studied and the contribution to the
thermal conductivity is calculated. In section 3 we apply the WDD-induced mechanism of
phonon scattering to the problem of thermal conductivity in amorphous dielectrics. The results
are compared with the experimentally observed κ for a-SiO2, a-GeO2, a-Se, and polystyrene
(PS). Section 4 is devoted to the detailed discussion of the results obtained, specifically with
relation to the proposed WDD-based model for dielectric glasses.

2. Theory of the WDD-induced scattering

In this section we study the contribution to the effective cross-section which comes from
the potential associated with a static deformation of a lattice caused by straight WDD. Two
reasonable approximations are in common usage in studies of such problems (see for example
Ziman (1960), Gantmakher and Levinson (1987)). First, we suppose that the scattering
processes are elastic and, second, that the Born approximation is valid. Also, we will consider
here the simplest case where the only elastic deformations are dilatations.

In this case, the effective perturbation energy due to the strain field caused by a single
WDD takes the form

U(r) = G Tr Eij (1)

where Tr Eij is the trace of the strain tensor due to WDD and G is an interaction constant.
Let the disclination lines be oriented along the z-axis and the position of the positive

disclination be (0,−L) (see figure 1). Notice that in the general case the axes of rotations
(with Ω1 = ez and Ω2 = −ez) are shifted relative to their positions by arbitrary distances
l1 and l2, respectively. For l1 = l2 = 0 one gets the biaxial WDD with non-skew axes of
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Figure 1. A schematic picture of a wedge disclination dipole with axes of rotation shifted by
distances l1 and l2. The disclination lines are oriented along the z-axis for both defects

rotation. It was shown (Li 1960) that this dipole can be simulated by a finite wall of edge
dislocations with parallel Burgers vectors. In particular, the far strain fields caused by biaxial
WDD agree with those from a finite dislocation wall (de Wit 1973).

For l1 − l2 = 2L and l1 = −l2 one gets the uniaxial and the symmetrical uniaxial WDD,
respectively. Notice that uniaxial WDD can be simulated by a finite wall of edge dislocations
complemented by two additional edge dislocations at both ends of the wall. The sign of these
dislocations is opposite to that of the dislocations in the wall, and the absolute values of the
Burgers vectors are equal to b = 2L tan(/2) (b = by for the chosen geometry). As a result,
the uniaxial WDD becomes a strongly screened system as opposed to the biaxial WDD (see
figure 2). In the general case, l1 �= l2 �= 0, one gets the biaxial WDD with shifted axes
of rotation.

Substituting the explicit form of Eij into equation (1) (see appendix A) we find for the
perturbation energy U(r)

U(x, y) = B

[
1

2
ln

(x + L)2 + y2

(x − L)2 + y2
− l1

x + L

(x + L)2 + y2
+ l2

x − L

(x − L)2 + y2

]
(2)

where B = Gν(1−2σ)/(1−σ), ν = /2π is the Frank index, and σ is the Poisson constant.
Notice that all possible types of WDD are included in equation (2).

As is seen from equations (A.1) and (A.2) given in the appendix, all strains caused by
WDD are located in the xy-plane. In this case, the only components of the wavevector that
are normal to the defect lines, q = q⊥, are involved in the scattering process. For the sake of
simplicity, let us assume that carriers are incident normally to disclination lines.

The problem reduces to the two-dimensional case with the mean free path given by

�−1 = ni

∫ 2π

0
(1 − cos θ)R(θ) dθ. (3)

Here R(θ) is an effective differential scattering radius, and ni is the areal density of WDD.
Notice that when the axes of WDD are oriented randomly, one has to perform an additional
averaging over all possible angles of incidence. As was shown for dislocations (Gantmakher
and Levinson 1987), however, such averaging leads merely to a modification of the numerical
factor in R(θ).

Within the Born approximation, R(θ) is determined to be (Ziman 1960)

R(θ) = qS2

2πh̄2v2
|〈q|U(r)|q′〉|2 (4)
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Figure 2. A contour plot of the perturbation energy (2), U(x, y)/B (in Å), for biaxial WDD
(l1 = l2 = 0, upper picture) and for uniaxial WDD (l1 − l2 = 2L, lower picture).

where all vectors are two dimensional, S is a projected area, v is the magnitude of the carrier
velocity. The bar denotes averaging over α which is the angle between p = q − q′ and the
x-axis; in other words, it means the averaging over randomly oriented dipoles in the xy-plane.
Evidently, the problem reduces to the estimation of the matrix element in equation (4) with
the potential from equation (2). For this purpose, it is convenient to use the polar coordinates
(r, ϕ):

U(p, α) = 〈q|U(r)|q′〉 = 1

S

∫
d2r exp[ipr cos(ϕ − α)]U(r, ϕ). (5)

For elastic scattering, the matrix element in equation (5) depends only on |q| = |q′| and the
scattering angle θ . Thus, p = |p| = |q − q′| = 2q sin(θ/2).
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After the integration in equation (5) and following averaging of |U(p, α)|2 with respect
to α, one obtains (see the details in appendix B)

R(θ) = πB2

h̄2v2 sin(θ/2)

{
2

p3

(
1 − J0(2pL)

)
+

$2
l

2p

(
1

2
+ J0(2pL) − J1(2pL)

2pL

)

− 2$l

p2
J1(2pL)

}
(6)

where $l = l1 − l2 and Jn(t) are the Bessel functions. Upon integrating equation (3) with
respect to θ one finally obtains

�−1 = B2L2π2ni

qh̄2v2

{
z2

(
1

2
+ J 2

0 (2qL)

)
+

(
8 − z(z + 8)

2

)
(J 2

0 (2qL) + J 2
1 (2qL))

− 4

qL
J0(2qL)J1(2qL)

}
(7)

where z = $l/L. It should be emphasized that equation (7) is the exact result which allows
us to describe all types of WDD. Notice that the behaviour of � in equation (7) is actually
governed by the parameter 2L.

Let us consider two important limiting cases. For biaxial dipoles with $l = 0 (z = 0)
one obtains

�−1
bi = 8B2L2niπ

2

qh̄2v2

{
J 2

0 (2qL) + J 2
1 (2qL) − 1

2qL
J0(2qL)J1(2qL)

}
. (8)

For uniaxial dipoles $l = 2L (z = 2), and the mean free path � is

�−1
uni = 2B2L2niπ

2

qh̄2v2

{
1 + J 2

0 (2qL) − J 2
1 (2qL) − 2

qL
J0(2qL)J1(2qL)

}
. (9)

In what follows, we apply the formalism developed to the problem of the WDD-induced
electron and phonon scattering.

2.1. Electron scattering: WDD-induced residual resistivity in metals

As is known (Ziman 1960), the residual resistivity of metals may be caused by electron
scattering due to linear defects like dislocations, stacking faults, and grain boundaries. It was
mentioned in the introduction that the WDD-based model is a good candidate for modelling
the grain boundaries. Thus, the previous analysis allows us to study the contribution to the
residual resistivity due to grain boundaries.

Let us use the well-known Drude formula for the resistivity in the static regime:

ρ =
(

m

ne2

)〈
1

τ

〉
(10)

where τ is the relaxation time, m and e are the mass and the charge of the conduction electron,
and n is the electron density. For point impurities and linear defects like dislocations and
disclinations, the angle brackets denote the configurational average. In our case, this is the
averaging over α in equation (4). Thus, one can write the final result

ρ =
(

mvF

ne2

)
�−1 (11)

with � from equation (7), where q = qF , v = vF , and G = Gd . Obviously, the index F

denotes the Fermi values, and Gd 	 (2/3)EF is the deformation potential constant (Ziman
1960), where EF is the Fermi energy. For simplicity, we restrict our consideration to metals
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with a parabolic zone where the minimum lies in the centre of the Brillouin band. For metals,
typically qF ≈ 0.6–1.2 Å−1. The dipole separation is chosen to be 2L ≈ 102–104 Å, which
is of the order of the grain size in polycrystals. In this case, 2qFL � 1 and, consequently, the
Bessel functions in equation (7) can be approximated by their asymptotic values. The results
are as follows:

ρbi = 16B2
e πLni/ne

2mv3
F (12)

and

ρuni = 2B2
e π

2L2ni/ne
2h̄v2

F (13)

where Be = B(G = Gd).
The main difference between the behaviours of ρbi and ρuni comes from their L-

dependences. As is seen, at fixed ni , ρbi ∼ L while ρuni ∼ L2. As a result, ρbi is found
to be larger than ρuni . This agrees with the above-mentioned properties of these dipoles. In
the case of biaxial WDD, the main contribution is seen to come from the low-angle scattering
processes, in view of the long-range character of the perturbation energy in equation (2).
In contrast, for uniaxial WDD the large-angle scattering dominates, since they are strongly
screened systems (see figure 2). In particular, at 2L ∼ 103–104 Å, ni ∼ 109 cm−2, and
ν = 0.01, one obtains ρbi ∼ 10−12–10−11  cm while ρuni ∼ 10−9–10−7  cm. Notice that
the value of ρuni agrees with that in the case of edge dislocations of a similar density (Rider
and Foxon 1967, Blewitt et al 1954).

It should be noted that the experiments show an increase of the residual resistivity of
nanocrystalline metals with L decreasing (Gusev 1998). This can be explained within the
above-proposed model as due to the direct L-dependence of ni . Indeed, it is reasonable to
assume that ni ∼ L−p with 1 < p � 2 (usually p = 2). Thus, in accordance with equation
(12), ρbi increases with decreasing L. It is interesting to note that in this case ρuni decreases
with L (except for p = 2), as is seen from equation (13). Let us reiterate that only the biaxial
WDD with non-skew axes of rotations (BWDD) simulate the grain boundary.

2.2. Phonon scattering: low-temperature heat transport

It is clear that phonon scattering due to WDD also affects the low-temperature thermal
conductivity, κ . We start from the well-known kinetic formula

κ = 1

3

∫ ωD

0
C(ω, T )vsl(ω, T ) dω (14)

where C(ω, T ) dω is the specific heat contributed by acoustic phonons within the frequency
interval dω, vs is an average phonon velocity, and l(ω, T ) is the phonon mean free path. It is
suggested that C(ω, T ) has the standard form with a density of states quadratic in ω and the
Debye cut-off ωD .

The effective perturbation energy caused by the strain field of WDD is determined as
U(r) = h̄ωγ Tr EAB (Ziman 1960, Klemens 1955), where h̄ω is the phonon energy with
wavevector q, ω = qvs , vs is the velocity of sound (for simplicity it is assumed that the three
acoustic branches are equivalent), and γ is the Grüneisen constant. As previously, we suppose
that the phonons are incident normally to the disclination lines, so that we deal with a two-
dimensional scattering problem. The principal difference from the case of electron scattering
is the explicit q-dependence of the perturbation energy (see for example Ziman (1960)). That
is, the strain tensor due to the WDD remains the same while the coefficient B in equation (2)
should be replaced by Bph = h̄qvsγ ν(1 − 2σ)/(1 − σ). Equations (4) and (5) preserve their
form in this case as well.
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For BWDD the phonon mean free path is found to be (Osipov and Krasavin 1998b)

l−1
bi = 2D2(2νL)2niq

(
J 2

0 (2qL) + J 2
1 (2qL) − 1

2qL
J0(2qL)J1(2qL)

)
(15)

where D = πγ (1 − 2σ)/(1 − σ). For uniaxial WDD one obtains

l−1
uni = D2

2
(2νL)2niq

(
1 + J 2

0 (2qL) − J 2
1 (2qL) − 2

qL
J0(2qL)J1(2qL)

)
. (16)

Figure 3 shows l(ω) for three types of WDD. We have used a size of the grain boundary of
2L = 2700 Å, which is typical for polycrystals. As is seen, the three curves behave differently.
At low frequencies the scattering by uniaxial WDD resembles that by a point impurity. That
is, it strongly depends on ω: luni ∼ ω−5, thus once again confirming the view of uniaxial
WDD as a strongly screened system. At high frequencies, uniaxial dipoles scatter phonons
like dislocations with luni ∼ ω−1. It is interesting that the same ω−1-dependence appears for
arbitrary biaxial dipoles both at low and high frequencies. What is more important, there is
only one type of biaxial dipole, BWDDs, which show unique behaviour with lbi → constant
as ω increases (see figure 3). It was found (Osipov and Krasavin 1998a) that the change in
behaviour of lbi occurs at 2qL ∼ 1 or, equivalently, at ω∗ ∼ vs/2L. Thus, in the dominant-
phonon approximation the crossover temperature T ′ is defined by

T ′ ≈ h̄vs/2LkB. (17)

It should be emphasized that this intriguing result provides the basis for the following important
speculations. Notice that some visible irregularities in figure 3 arose from rapid oscillations
of the Bessel functions near the characteristic frequency ω∗.

��
��

��
��

��
��

��
��

����

���

�

��

��
��
�
�

ω�������

�

Figure 3. The phonon mean free path l(ω) at 2qDL = 6 × 103 for $l = 0 (solid line), $l = 2L
(dotted line), and $l = 0.5L (dashed line). The parameter set used is: L = 1.35 × 10−5 cm,
ν = 0.023, D = 2.6, ni = 1.8 × 107 cm−2, and vs = 4.8 × 105 cm s−1.

A contribution to the thermal conductivity caused by the phonon scattering due to static
WDD can be obtained by integration of equation (14) using the phonon mean free path from
equations (15) and (16). As was shown by Osipov and Krasavin (1998a), only the thermal
conductivity with lbi from equation (15) exhibits a crossover from κ ∼ T 2 to κ ∼ T 3 at
low temperatures. It should be emphasized that such behaviour of κ(T ) is specific to BWDD
(which simulate a finite wall of edge dislocations). For example, for the uniaxial dipoles one
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obtains that κ ∼ T −2 at low temperatures and κ ∼ T −1 for T → 5D , where 5D is the
Debye temperature. The result of the calculations is shown in figure 4 for the chosen model
parameters. Notice that κ(T ) depends essentially on 2L in accordance with equation (17). In
particular, the solid curve in figure 4 (for 2L = 2000 Å) corresponds to T ′ ∼ 0.1 K.

���� ��� � ��

����

�
κ�
7
�

�:
�F
P
.

�

�

7�.�

Figure 4. Reduced thermal conductivity due to biaxial WDD scattering, κ/T 3, versus temp-
erature T , calculated according to equation (14). The parameter set used is: L = 1 × 10−5 cm,
ni = 1.25 × 107 cm−2 (solid line); L = 1 × 10−6 cm, ni = 2 × 109 cm−2 (dashed line);
L = 1 × 10−7 cm, ni = 3 × 1011 cm−2 (dotted line). The rest of the parameter set: ν = 0.023,
vs = 4.8 × 105 cm s−1, 5D = 350 K, D = 2.6, is the same for each curve.

It should be mentioned that a similar low-temperature crossover has been observed in
both undeformed and plastically deformed alkali halides (Anderson and Malinowski 1972,
Roth and Anderson 1978) as well as in ferroelectric KDP crystals (Weilert et al 1993). For
undeformed single LiF crystals the crossover has been explained by phonon scattering on
the sample surfaces. Two important questions, however, were left open: (i) why the thermal
conductivity behaves like T 2 below T ′; and (ii) why the crossover temperature lies near 0.1–
0.2 K. Moreover, in ferroelectric KDP crystals with fixed number of domain walls, the same
crossover is well pronounced in both cases: when surface scattering was taken into account and
when it was subtracted, so only the grain-boundary scattering was effective. Surprisingly, the
crossover temperatures in these experiments were found to be exactly the same: T ′ ∼ 0.2 K.
To our knowledge, there is still no satisfactory explanation of these phenomena.

In accordance with our results, the very appearance of a crossover from T 3 to T 2 at low
temperatures should indicate that a crystal contains either grain boundaries or rotational defects
like disclinations and/or disclination dipoles of a certain kind (which means a disordered state).

3. BWDD in dielectric glasses: thermal conductivity

There are two important consequences of the previous section. First, it was found that
the BWDD-induced contribution to the thermal conductivity behaves like T 2 at very low
temperatures. As is well known (Zeller and Pohl 1971), this behaviour is peculiar to dielectric
glasses, where κ ∼ T 2 for T < 1 K. Second, the critical temperature T ′ depends considerably
on the size of the dipole separation (the length of the wall of the edge dislocations). In particular,
one obtains T ′ ∼ 1 K at 2L ∼ 20 Å (see also figure 4). It is intriguing that exactly the same
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values are expected within the cluster model proposed for dielectric glasses (Phillips 1981a, b).
This finding has stimulated a detailed study of the problem. It was shown by Osipov

and Krasavin (1998b) that the experimental data for the thermal conductivity in vitreous silica
(a-SiO2) can be explained by a combination of two scattering processes. The first one comes
from the sound wave scattering due to BWDD while the second one is known as Rayleigh-type
scattering, which appears due to the local variations in structure. In this section, we present
the model and extend the analysis to other glasses.

In accordance with our scenario, the mean free path is determined to be

l(ω) = (l−1
bi + l−1

struc)
−1 (18)

where lbi comes from equation (15), and lstruc should be taken in the most general form,
describing the Rayleigh scattering over the complete frequency range. The interpolation
formula reads (see for example Jones et al (1978))

lstruc = Y−1

(
h̄ω

kB

)−4

+ l0 (19)

where Y is a constant which has been considered as a fitting parameter, and l0 is the high-
frequency limit. Figure 5 shows lbi , lstruc, and l(ω, T ) with the model parameters for
a-SiO2 taken from table 1. One can see that l(ω) has a form typical for glassy materials.
At low frequencies, ω < 1012 s−1, l(ω) ∼ ω−1, and the main contribution is due to the
BWDD-induced scattering. In the intermediate region, both scattering processes are involved,
while at high frequencies, the Rayleigh scattering becomes dominant. Notice that the region
1012 s−1 < ω < 1013 s−1 is responsible for the plateau in the thermal conductivity. We have
found (Osipov and Krasavin 1998b) that the size of this region decreases with increase of 2L
and/or l0.
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Figure 5. The phonon mean free paths lbi (dashed line), lstruc (dotted line), and l(ω) (solid line) as
functions of the frequency for a-SiO2. The parameter set for a-SiO2 is shown in table 1; D = 2.6.

It is interesting to note that equation (18) supports the empirical relation l/λ ∼ 150, with λ

being the wavelength of a phonon, which holds for many glasses at low temperatures (Freeman
and Anderson 1986). Indeed, at low frequencies, l ∼ lbi . Expanding equation (15) at qL � 1
one gets

lbi

λ
= 1

2πD2(2νL)2ni

. (20)
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Table 1. Parameters used for the numerical fits. The units are as follows: vs : 105 cm s−1; 5D : K;
ni : 1011 cm−2; 2L: 10−7 cm; Y : cm−1 K−4; l0: 10−7 cm.

Material vs 5D ni 2L ν l0 Y

a-SiO2 4.1 342 2 2 0.1 1.5 1
a-GeO2 2.6 192 2 2 0.1 0.6 2.9
a-Se 1.19 113 2 2 0.1 0.2 90
PS 1.67 123 5 2.4 0.1 0.5 80

This is a constant which depends on the model parameters which characterize the structural
and elastic properties of a material. It is reasonable to assume that these parameters vary only
slightly for different amorphous dielectrics (see also table 1). This can explain the observed
constant-like behaviour of l/λ. In particular, for our choice of parameters for a-SiO2, one gets
lbi/λ ∼ 135.

To calculate κ with l(ω) from equation (18), it is convenient to use the dimensionless form
of equation (14):

κ = k4
BT 3

2π2h̄3v2
s

∫ 5D/T

0
x4ex(ex − 1)−2l(x) dx (21)

where x = h̄ω/kBT , and the specific heat capacity is chosen in the standard Debye form.
The results are shown in figure 6 and figure 7. As is seen, there is a good agreement with
the experimental data over a wide temperature range. Notice that we did not use any special
fitting programs to get the best fit. Instead, we have fixed the parameters related to BWDD:
a dipole separation 2L = 20 Å, the density of defects ni = 2 × 1011 cm−2, and the Frank
index ν = 0.1 (except those for PS; see table 1), and tried to bring the parameters for Rayleigh
scattering close to those given by Graebner et al (1986). In our opinion, this provides better
insight into the essence of the proposed model.
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Figure 6. Thermal conductivity versus temperature
for a-SiO2 calculated according to equation (20) with
l(ω) from equation (17) with a set of parameters from
table 1. Experimental data from Zeller and Pohl (1971)
are indicated by triangles.

4. Discussion

The results obtained in the previous section call for an additional discussion.
As is well known, a successful explanation of the thermal conductivity in amorphous

dielectrics at very low temperature (T < 1 K) has been suggested within the phenom-
enological TLS model (Anderson et al 1972, Phillips 1972). That is, it was proposed that
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Figure 7. Thermal conductivity versus temperature for a-GeO2 (squares), a-Se (triangles),
and polystyrene (PS) (circles); the experimental data are taken from Zeller and Pohl (1971).
Theoretically calculated curves are represented by solid lines. The set of model parameters is
given in table 1.

at low temperatures the principal scatterers of acoustic phonons in glasses are the tunnelling
states. At the same time, the universal properties of glasses in the intermediate-temperature
range (the plateau region, 1 < T < 10 K), were not understood even qualitatively within the
TLS model (Freeman and Anderson 1986, Jones and Phillips 1983, Karpov and Parshin 1985).
Some of these problems, however, were solved later by invoking concepts additional to that
of TLS. In particular, a reasonable expression for the total phonon mean free path that allows
one to describe κ over a wide temperature range reads (see for example Grannan et al (1988,
1990a, b), Graebner et al (1986))

l(ω, T ) = (l−1
t + l−1

add + l−1
R )−1 (22)

where lt and lR are due to TLS and the Rayleigh scattering, respectively; ladd comes from
some additional scattering mechanisms. One possible candidate considered was the phonon
scattering from some kind of disorder: clusters (Graebner et al 1986), fractals (Alexander
et al 1983), etc. The modern approaches involve the phonon scattering from localized low-
frequency vibrations (Grannan et al 1988, 1990a, b, Karpov and Parshin 1985, Yu and Freeman
1987), manifesting themselves both experimentally and in computer simulations (Buchenau
et al 1986, 1988).

Another important question is that of the low-temperature specific heat of glasses, Cv .
As is known (Zeller and Pohl 1971), Cv is characterized by an anomalous linear temperature
behaviour below T < 1 K and the excess value in the plateau region, seen as a bump in
Cv/T

3 (Zeller and Pohl 1971). An explanation based on the TLS model looks quite correct at
T < 1 K, while the extended TLS models (Grannan et al 1988, 1990a, b, Karpov and Parshin
1985) allow one to describe Cv(T ) in the plateau region.

Notice that all of these approaches are essentially based on the TLS picture. However,
in spite of obvious success in interpretation of the experimental data, the original TLS model
leaves some important questions unanswered. First, the microscopic basis for the TLS is
unclear (Phillips 1987, Galperin et al 1989). Second, the quantitative universality seen in
various glasses at low temperatures (for example, the above-mentioned relation l/λ ∼ 150)
has not been explained. Indeed, according to the TLS model

l/λ ∝ (P̄ )−1 ∝ Tg/VF (23)
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where P̄ is the density of the TLS, Tg is the glass transition temperature, and VF is the free
volume frozen into the glass. However, the experimental data show that the above relation
does not depend explicitly on Tg (see for example Freeman and Anderson (1986)).

In recent experiments (Xiao Liu et al 1997, 1998, Watson 1995), important progress has
been made towards achieving an understanding of the nature of the TLS in glasses. That is,
the evolution of these excitations in disordered materials has been investigated via the internal
friction measurements. No difference between the low-temperature properties of amorphous
and disordered solids was found. Moreover, it was shown that a disorder common to both
disordered crystalline and amorphous phases is the primary cause of the appearance of the
TLS. Thus, it has been suggested that the generation of the low-energy excitations can be
understood in terms of the internal random strains which are built up with the defect density
(implanted ion dose) increasing. The main conclusion of Xiao Liu et al (1997) is that the
individual lattice defects (rather than the amorphous structure itself ) play the primary role in
producing the low-energy excitations.

Let us discuss these points in the context of our model. It has been demonstrated that
the BWDD-induced phonon scattering combined with the Rayleigh scattering allows us to
describe the thermal conductivity of various dielectric glasses over a wide temperature range.
Regarding equation (23), we have shown in the previous section that the WDD-based model
predicts a constant for the relation l/λ at low temperatures (see equation (20)). It is interesting
that this constant depends only on the model parameters which characterize the structural
properties of amorphous dielectrics.

While the question relating to the specific heat in glasses is beyond the scope of our paper,
we can discuss briefly an expected contribution to the specific heat due to BWDDs. Notice
that a similar problem was first considered a long time ago (Granato 1958, Couchman et al
1976). Granato analysed the pinned-dislocation contribution to the specific heat and found
that at low temperatures (Granato 1958)

Cv = pπ2

3

nda
2

Z

NkBT

5D

(24)

where

p = vs

√
ρ/G

(G is the shear modulus andρ the density of a material), nd is the dislocation density, a the lattice
constant, Z the number of atoms per unit cell, and N the number of atoms per mole. This result
has been discussed in connection with dielectric glasses (Couchman et al 1976). In particular,
it was shown that there is a satisfactory agreement with the experimentally observed data for
some glasses. As is known (Li 1972), with decrease of the dipole separation 2L the biaxial
WDD becomes equivalent to an edge dislocation with the Burgers vector b = 4L tan(/2).
Thus, the above result in equation (24) for dislocations should be valid also for the BWDD-
based model when 2L is very small (which is true in our case).

As we have mentioned above, a possible explanation of the specific heat behaviour both
at T � 1 K and 1 � T � 10 K has been given within the extended TLS models. These
approaches interpret the specific heat peculiarities in terms of the TLS states and the additional
quasilocal harmonic modes. The excess harmonic modes coexisting with sound waves below
1 THz have actually been observed in glasses (Buchenau et al 1986, 1988). It should be
recognized that the presence of localized harmonic modes is typical for elastic materials with
extended defects as well. In particular, the phonon spectrum in the presence of a dislocation
was shown to possess localized modes (Lifshitz and Kosevich 1966, Maradudin 1970). Also,
the effect of localized vibration modes due to linear defects on the thermal properties was
studied within the framework of the vibrating-string model of a dislocation (Granato 1958,
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Kneezel and Granato 1982). It is clear, however, that this consideration should be accompanied
by a detailed study within the BWDD model. This problem invites further investigation.

In conclusion, let us discuss a possible universality of the BWDD-based picture in glasses.
Our consideration assumes the existence of new principal scatterers in disordered materials
which have a clear physical origin. Indeed, as indicated above, the long-range strain fields
caused by seemingly different physical objects (such as BWDDs, finite dislocation walls,
and grain boundaries) are in fact identical. This allows us to include in the consideration
various non-crystalline materials. In particular, the results obtained can be applied to both
polycrystals and amorphous bodies. Supposedly, in disordered materials there exist randomly
distributed BWDDs (small disorder corresponds to a low density of defects). This could
explain the observed universal thermal properties of various materials: amorphous bodies,
quasicrystals, and disordered crystals. It should be mentioned that for the amorphous dielectrics
considered in our paper, the BWDD-based model supports the cluster picture proposed earlier
by Phillips (1983, 1981a, b). Indeed, the best fit for the thermal conductivity gives 2L = 20 Å
as an estimate of the BWDD dipole separation, in good agreement with the predictions of
the cluster model of glasses (Phillips 1983, 1981a, b). There is also some experimental
evidence from neutron diffraction measurements (as well as from a study of soft breakdown in
ultrathin-gate dielectrics (see for example Weir et al (1997)) confirming the universal character
of this parameter in chalcogenide glasses (Phillips 1981a, b) and vitreous ethanol (Fayos
et al 1996).

In metals, however, the phase with long-range orientational order and no translational
symmetry has been experimentally observed by means of x-ray scattering (Shechtman et al
1984, Horn et al 1986). This finding confirms the suggestion that supercooled liquids and
metallic glasses can be viewed as defected states (including disclinations) with icosahedral
bond orientational order (Nelson 1983, Kléman 1989, Sadoc 1981). In particular, in two
dimensions liquids are regarded as hexatic fluids interrupted by point disclinations (i.e. local
points of fivefold and sevenfold symmetry) (Halperin and Nelson 1978). In accordance with
this scenario (Nelson 1983, Halperin and Nelson 1978, Nelson 1982), there is a two-stage
pairing process: disclinations first pair to form 5–7 dipoles regarded as dislocations, which
then pair at lower temperature to form a crystalline solid. It is interesting that grain boundaries
are suggested to be linear arrangements of (5–7) dipoles.
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Appendix A

Let us find the exact expression for the perturbation energy in equation (1). The WDD-induced
strains Eij can be found by using Hooke’s law:

Eij = 1

2µ(1 + σ)

[
(1 + σ)σ d

ij − σσd
ll δij

]
(A.1)

where σd
ij are the stresses due to the WDD; µ and σ are the shear modulus and the Poisson

constant, respectively.
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For the geometry chosen in section 2 (see figure 1) the WDD-induced stresses σd
ij are

(de Wit 1973)

σd
xx = µ

2π(1 − σ)

[
1

2
ln

(x + L)2 + y2

(x − L)2 + y2
+

y2

(x + L)2 + y2
− y2

(x − L)2 + y2

− l1
(x + L)

(
(x + L)2 − y2)

)
(
(x + L)2 + y2

)2 + l2
(x − L)

(
(x − L)2 − y2)

)
(
(x − L)2 + y2

)2

]
(A.2)

σd
yy = µ

2π(1 − σ)

[
1

2
ln

(x + L)2 + y2

(x − L)2 + y2
+

(x + L)2

(x + L)2 + y2
− (x − L)2

(x − L)2 + y2

− l1
(x + L)

(
(x + L)2 + 3y2)

)
(
(x + L)2 + y2

)2 + l2
(x − L)

(
(x − L)2 + 3y2)

)
(
(x − L)2 + y2

)2

]
(A.3)

σd
zz = σµ

π(1 − σ)

[
1

2
ln

(x + L)2 + y2

(x − L)2 + y2
− l1

x + L

(x + L)2 + y2
+ l2

x − L

(x − L)2 + y2

]
. (A.4)

Notice that equations (A.2)–(A.4) describe the stresses due to a finite wall of edge dislocations
at large distances. Applying equations (A.2)–(A.4) in equation (A.1), one gets all the com-
ponents of the strain tensor Eij and, finally, equation (2).

Appendix B

The perturbation energy given by equation (2) takes the following form in polar coordinates:

U(r, ϕ) = B

[
1

2
ln

r2 + 2rL cos ϕ + L2

r2 − 2rL cos ϕ + L2
− l1

r cos ϕ + L

r2 + 2rL cos ϕ + L2
+ l2

r cos ϕ − L

r2 − 2rL cos ϕ + L2

]
.

(B.1)

The matrix element in equation (5) with the perturbation energy from equation (B.1) can be
calculated using the following formulae:

∞∑
k=1

z2k−1 cos(2k − 1)ϕ

2k − 1
= 1

4
ln

1 + 2z cos ϕ + z2

1 − 2z cos ϕ + z2
z2 � 1 (B.2)

∞∑
k=0

zk cos kϕ = 1 − z cos ϕ

1 − 2z cos ϕ + z2
|z| < 1. (B.3)

Substituting equations (B.2) and (B.3) into equation (B.1) and integrating in equation (5) one
obtains

U(p, α) = −i
4πBL

pS

[
J0(pL) cos α +

∞∑
k=1

(−1)kJ2k(pL)

(
cos(2k + 1)α

2k + 1
− cos(2k − 1)α

2k − 1

)]

+ i
2πB

pS
$l

[
J0(pL) cos α + 2 cos α

∞∑
k=1

(−1)kJ2k(pL) cos 2kα

]
(B.4)

where $l = l1 − l2 and Jm(z) is the Bessel function. The first term in equation (B.4) comes
from the integration of the logarithmic function in equation (B.1) while the second one comes
from two last terms in the r.h.s. of equation (B.1).

We have used the following standard integrals in deriving equation (B.4):∫ 2π

0
exp(iz cos ϕ) cos mϕ dϕ = 2π imJm(z) (B.5)
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∫
zkJk−1(z) dz = zkJk(z). (B.6)

The first sum in equation (B.4) can be simplified by differentiation with respect to α. The
second sum in equation (B.4) reads

∞∑
k=1

(−1)k cos(kα)J2k(z) = 1

2
cos[z cos(α/2)] − 1

2
J0(z). (B.7)

After straightforward calculations, one obtains

U(p, α) = B

S

[
−4π i

p2
sin(pL cos α) +

2π i$l

p
cos α cos(pL cos α)

]
.

To find R(θ) in equation (4) one has to average |U(p, α)|2 over α:

|U(p)|2 = |〈q|U(r)|q′〉|2 = 1

2π

∫ 2π

0
|U(p, α)|2 dα

= 2πB2

S2

∫ 2π

0

(
4

p4
sin2(pL cos α) − 2$l

p3
cos α sin(2pL cos α)

+
$2

l

p2
cos2 α cos2(pL cos α)

)
dα. (B.8)

Using ∫ 2π

0

(
cos(z cos α)

sin(z cos α)

)
cos(nα) dα = 2π

(
cos(nπ/2)

sin(nπ/2)

)
Jn(z) (B.9)

one finally gets

|U(p)|2 = 4π2B2

S2

{
2

p4

(
1 − J0(2pL)

) − 2$l

p3
J1(2pL)

+
$2

l

2p2

(
1

2
+ J0(2pL) − J1(2pL)

2pL

)}
. (B.10)

Substituting equation (B.10) into equation (4) one obtains the effective differential scattering
radius in equation (6).

The exact expression for the mean free path in equation (3) takes the form

�−1 = niB
2π

h̄2v2

{
1

2q3
I1(qL) +

$2
l

2q
I2(qL) − $l

q2
I3(qL)

}
(B.11)

where

I1(qL) =
∫ 2π

0

dθ

sin2(θ/2)
(1 − J0(4qL sin(θ/2))

= 16q2L2π
(
J 2

0 (2qL) + J 2
1 (2qL)

) − 8qLπJ0(2qL)J1(2qL) (B.12)

I2(qL) =
∫ 2π

0

(
1

2
+ J0(4qL sin(θ/2)) − J1(4qL sin(θ/2))

4qL sin(θ/2)

)
dθ

= 2π

(
1

2
+ J 2

0 (2qL)

)
− π

(
J 2

0 (2qL) + J 2
1 (2qL)

)
(B.13)

I3(qL) =
∫ 2π

0

dθ

sin(θ/2)
J1(4qL sin(θ/2)) = 4qLπ

(
J 2

0 (2qL) + J 2
1 (2qL)

)
. (B.14)

The final result for the mean free path is given by equation (7).
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